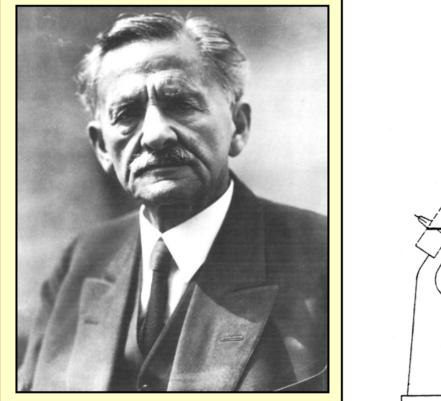
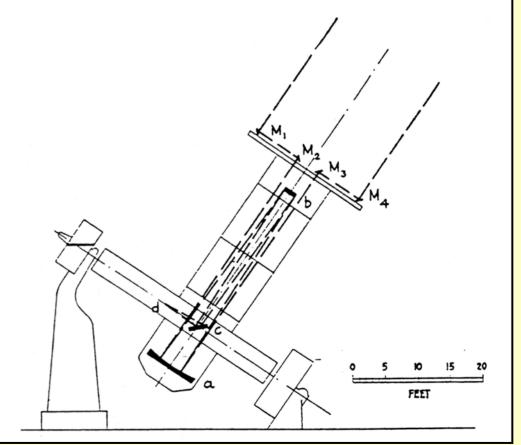
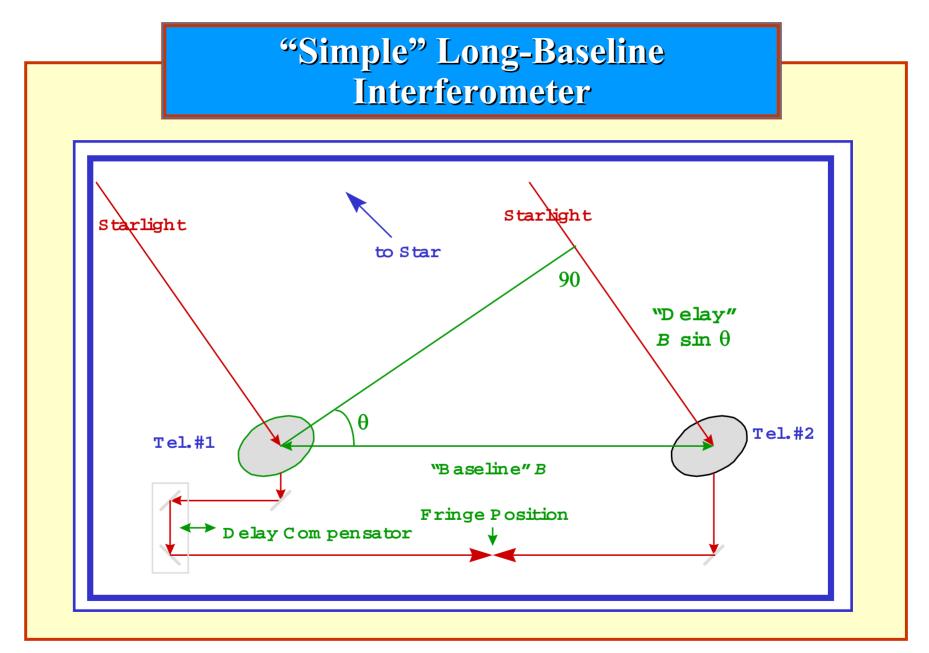
Why Build Stellar Interferometers?

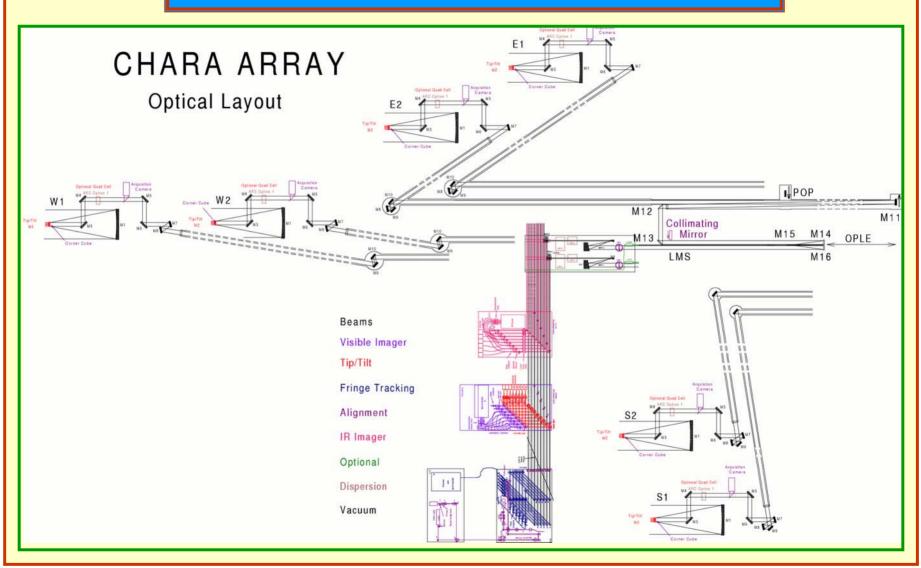

H.A. McAlister CHARA, Georgia State University


Because they are there!?

<u>Technical Challenge</u> <u>&</u> <u>Scientific Opportunity</u>

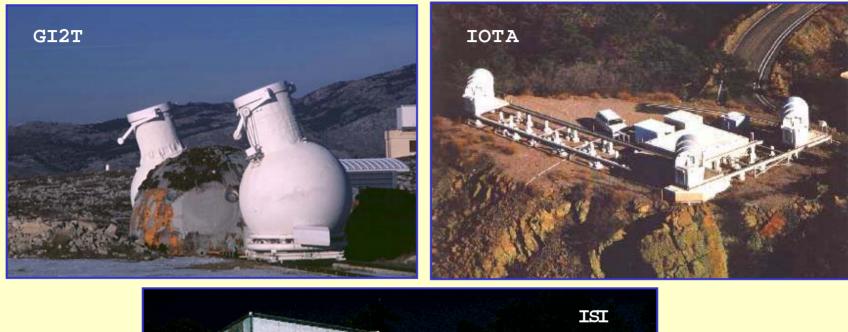
Leveraging Resolution


But, This is a Tough Business


50-ft Interferometer site in early 1980's

Pease's 50-ft Interferometer on Mt. Wilson, c. 1935

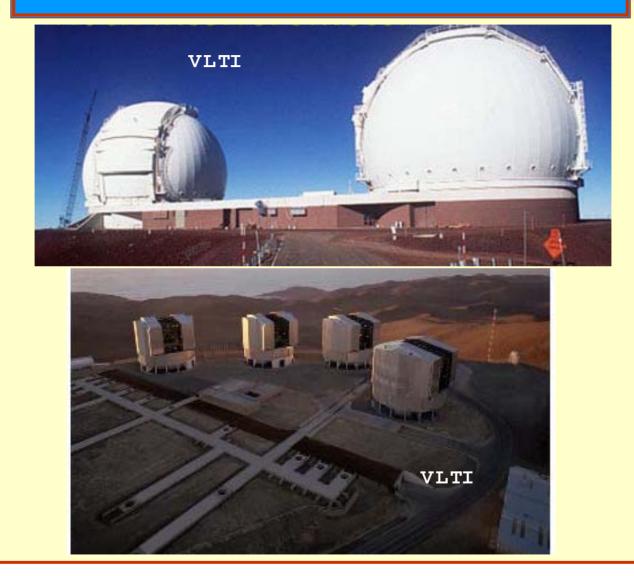
The Real Thing Could Throughput be an Issue Here?

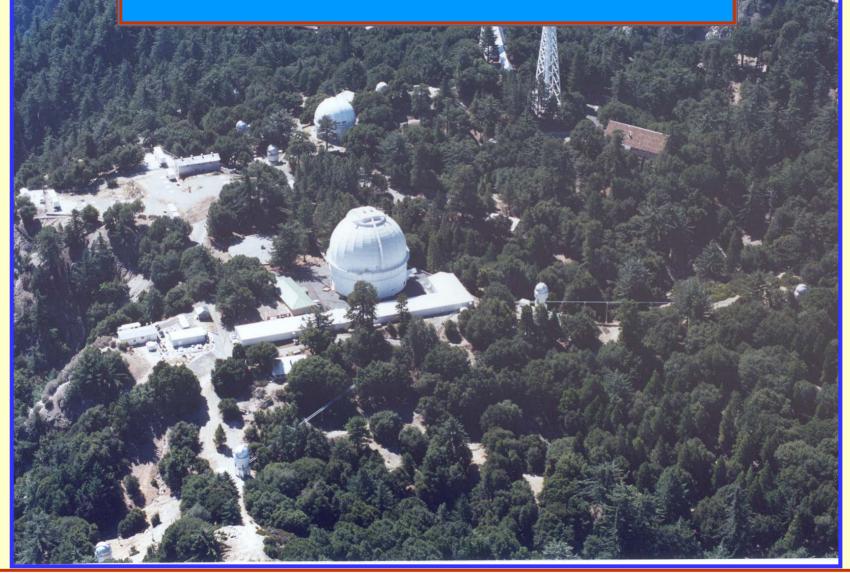

Currently Operating Instruments

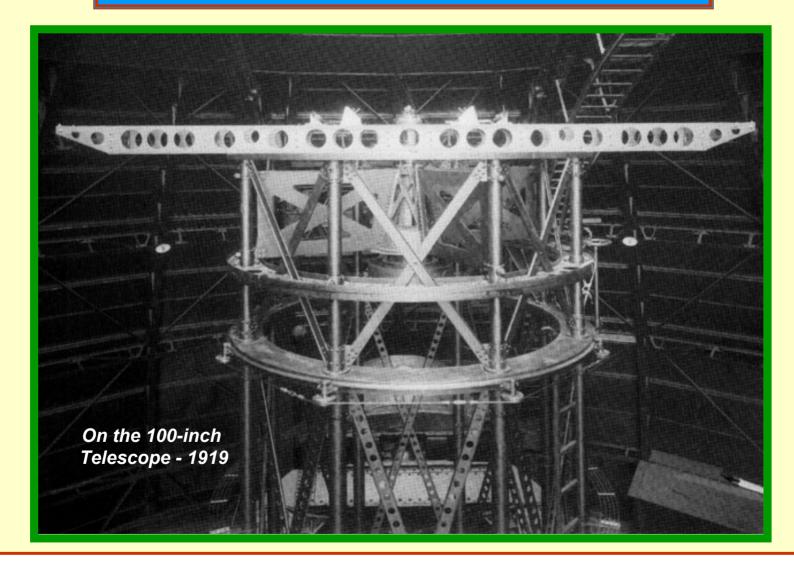
N am e	Institution	Sibe		Element Aperture (cm)	Max. Baseline (m)	Operating Wavelength (microns)	Operating Status
GI2T	CERGA	Calem	2	150	35	0.4-0.8 &>1.2	since 1985
COAST	CambridgeU	Cam bridge	4	40	100	0.4 - 0.95 & 2.2	since 1991
SUSI	Sydney U	Nanabri	13	14	640	0.4 - 0.66	since 1991
IOTA	CfA	Mt.Hopkins	3	45	38	0.5 - 2.2	since 1993
ISI	Berkeley U	Mt.Wilson	3	165	30(+)	10	since 1990
NPOI	USNO NRL	Anderson M esa	6	60	435	0.45 - 0.85	since 1995
PTI	JPL Caltech	Mt.Pakmar	2	40	110	1.5 - 2.4	since 1995
CHARA	Georgia St.U	Mt.Wilson	6	100	350	0.45 - 2.4	since 1999
Keck	CARA	M auna K ea	2(4)	1,000(150)	165	2.2 - 10	fringes 03,01
VLTI	ESO	CerroParanal	4(3)	840(250)	200	0.45-12	fringes 03,01

Postcards from the Fringe I.

Postcards from the Fringe II.




Postcards from the Fringe III.


Postcards from the Fringe IV.

You'll See This One on Wednesday

Lest We Forget...

Awaiting Your Wednesday Inspection

Challenges

Interferometers are Complex & Hierarchical Systems

Numerous sophisticated subsystems: Siderostats/Telescopes Delay Lines Fringe Trackers Beam Combiners Alignment Metrology (Astrometry requires exceptional performance)

All working together! (Just imagine all the lovely single-point failure modes!)

Attention to calibration is crucial (How do you calibrate very long baselines for which point sources don't exist?)

Challenges (Cont.)

<u>New Tools & Algorithms Required</u>

Scheduling & Archiving (Necessary evils) Imaging (How do you combine many beams simultaneously? Think about it; It's not easy.)

<u>Science</u>

What's optimal? What's Realistic? Avoid over-heightening expectations (Be careful what you promise to do. People may remember.) Get theorists involved (Ultimately, they're our customers) Develop collaborations (There are a lot of smart people out there)

Funding

Still widely regarded as a developmental area providing niche science (Lots of stars, but some galaxy stuff!) Patience & perseverance (Hey, CHARA took 11 years to fund!) Develop Partnerships (Their money is as green* as yours)

**with appropriate apologies to non-US participants*

Opportunities

Wonderful Resolution

1,000 mas - classical imaging
20 mas - adaptive optics
10 mas - HST
0.1 mas - SUSI
2 orders gain over AO & HST
(but very narrow FOV & limited dynamic range!*)

*Yes, NASA/ESA, we do need exquisite telescopes in space

Access to New Science Resolution and Accuracy*

*If you do your calibration carefully

Opportunities (Cont.)

Are Current Projects Stepping Stones to an OVLA?

Well... maybe, but then maybe not.

- Significant science, of broad impact, must be forthcoming (Soon!) Imaging must be demonstrated for complex objects Partnerships must be established More black-belt interferometrists needed (Hence this SS!)
- May be built in the 2010 decade?? If so, those in this room will be building it
- Can we learn from the radio experience?
 T_{VLA} T_{GBI} = Only ~20 years!
 But, is O/IR interferometry really analogous?

Interferometry Science Most Favorable Areas

Single Stars

Effective Temperatures & Fluxes Rotational Oblateness YSO Structure & Morphology Stellar Surface Features Novae/Supernovae

• <u>Binary & Multiple Stars</u> Resolved Spectroscopic Binaries *Stellar Masses <u>and</u> Luminosities Distance Calibrations Radii of Components* Detection of Low-Mass Companions

• <u>Astrometry</u> Ground (NPOI) & Space (SIM)

Nice Example of a Revolution Resolved Spectroscopic Binaries

Double-Lined Binaries

Spectroscopy gives mass ratio & asin*i* Interferometry gives a and *i* Together yield masses & distances *("orbital parallax")* ~200 DSB's have a" > 1 mas

- <u>Single-Lined Binaries</u> Accurate parallaxes give individual masses
- 70% of SB's are Resolvable

Many radii also measurable

Interferometry Science *Other Areas*

Single Stars

Limb Darkening Linear Diameters Star Formation Phenomena & Dynamics Pre-Main Sequence Objects Absolute Rotation Flare Star Phenomena Cepheid P-L Calibration Mira Pulsations Non-radial Oscillations Hot Star Phenomena (shells, winds, etc.) Cool Star Shells

<u>Binary & Multiple Stars</u> Duplicity Surveys Close Binary Phenomena

- <u>Star Clusters</u>
 Proper Motions
 Duplicity Surveys
- <u>Extragalactic</u> Binaries in Magellanic Clouds AGN Structure
- <u>Solar System</u> Planetary Satellites Minor Planets & Comets Solar Surface
- <u>Extrasolar Planets</u> Astrometric Detection Inspection/Verification Imaging exo-zodiacal dust Imaging protoplanetary disks

Interferometry Science Other Areas (Cont.)

You'll Think of Something

(Get the theorists involved!)

"History has taught us that whenever a new technique enters a new realm of observational phase space, the most striking and productive results tend to be those not anticipated by even the most prescient thinkers" - Daniel Popper, 1990

Interferometry Science In Perspective

- Presently Sensitivity & (U,V) Limited Low Throughput is Inevitable Adaptive Optics May Help Limited Imaging Capability
- Outstanding Stellar Science
- Limited Extragalactic Science
 Provided by VLTI & KI
- The success of the current retinue of instruments will determine the future of the field.